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Objective vs Subjective Probabilities

Set up problems in an objective probabilistic world (Ω,F ,P)
Work on problems in a subjective probabilistic world (Ω,F ,Q)

Here usually require no collapse of information:

Q ∼ P.

Example (Fundamental Theorem of Asset Pricing)

If no arbitrage, then there exists Q ∼ P s.t. the discounted price process
of stocks become a martingale in (Ω,F ,Q).

Benefits:
pricing = Expectation under Q
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A General Question of Interest

Question

Given a set K in L0(P), can we find Q ∼ P such that K is “nice” in
(Ω,F ,Q)?

Initiated by Brannath and Schachermayer ’99:

Let K be convex and bounded in probability, i.e., supX∈K P(|X | > n) −→ 0 as
n −→∞. Under either of the following

K is solid in L0(P), i.e., if X ∈ K and |Y | ≤ |X |, then Y ∈ K
K is positive (i.e., contained in L0

+(P))

there exists Q ∼ P such that K is bounded in L1(Q).
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Contributions of Kardaras et al

Question

Given a set K in L0(P), when can we find Q ∼ P such that K is uniformly
integrable in (Ω,F ,Q)?

Theorem (Kardaras and Žitković ’13, Kardaras 14’)

Let K be convex and bounded in L1(P). Suppose either (a) K is solid in L0(P),

or (b) K is positive s.t. K = co
(
(Xn)∞n=1 ∪ {X}

)
where Xn

P−→ X in L0
+(P).

TFAE:

1 ∃Q ∼ P such that the K is Q-uniformly integrable

2 ∃Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K
3 The L0(P)-topology is locally convex on the set K

L0-topology = convergence in probability, independent of choice of Q.

(1) =⇒ (2) =⇒ (3) are obvious for general K.
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Kardaras’s Questions

Theorem (Kardaras and Žitković ’13, Kardaras 14’)

Let K be specified as before. TFAE:

1 ∃Q ∼ P such that the K is Q-uniformly integrable

2 ∃Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K
3 The L0(P)-topology is locally convex on the set K

How about the reverses for general K?

Easy: (2) =⇒ (1) fails.

Kardaras ’14 asked:

(Q1): (2) =⇒ (1)if K is closed?
(Q2): (3) =⇒ (2)?

Our answers: (Q1) yes! (Q2) no even if K is quite good.
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Let K be specified as before. TFAE:

1 ∃Q ∼ P such that the K is Q-uniformly integrable

2 ∃Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K
3 The L0(P)-topology is locally convex on the set K

How about the reverses for general K? Easy: (2) =⇒ (1) fails.

Kardaras ’14 asked:

(Q1): (2) =⇒ (1)if K is closed?
(Q2): (3) =⇒ (2)?

Our answers: (Q1) yes! (Q2) no even if K is quite good.



Introduction Solution to (Q1) Solution to (Q2)

Kardaras’s Questions
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G., D.H.Leung, F.Xanthos ’19: yes to (Q1)

Main tool is “de-switching”.

Proposition

Let K be a convex bounded subset of L1(P). TFAE:

1 There exists Q ∼ P s.t. the L0(Q)- and L1(Q)-topologies agree on K
2 For any ε > 0, ∃A with P(A) > 1− ε s.t.

if Xn
P−→ X in K, then EP

[
|Xn − X |1A

]
−→ 0

⇑ simple, based on exhaustion. based on the celebrated Komlos theorem ↓

Proposition

Let K be a convex bounded subset of L1(P). The following are equivalent.

1 ∃Q ∼ P s.t. K is Q-uniformly integrable

2 ∀ε > 0, ∃A with P(A) > 1− ε such that if (Xn) ⊂ K is Cauchy in
probability, then EP

[
|Xn − Xm|1A

]
−→ 0 as n,m −→∞.

3 For any ε > 0, ∃A with P(A) > 1− ε s.t. KA := {X1A : X ∈ K} is
P-uniformly integrable.
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G., D.H.Leung, F.Xanthos ’19: yes to (Q1)

Let A be as given in (2) but KA is not P-uniformly integrable.

Then ∃c ′ > 0
and (Xn) in K s.t. ∀n ∈ N and ∀a1, . . . , an ∈ R,

EP

[∣∣∣ n∑
k=1

akXk1A

∣∣∣] ≥ c ′
n∑

k=1

|ak |.

Applying Komlós’ Theorem and relabeling, we may assume that the arithmetic
means of (Xn) converge to some X ∈ L0(P) a.s. Put

Yn =
1

2n

2n∑
k=1

Xk .

Clearly, (Yn) ⊂ K is Cauchy in probability, and thus by choice of A,
(
Yn1A

)
is

Cauchy in L1(P). On the other hand, whenever n > m,

EP
[∣∣Yn1A − Ym1A

∣∣] =EP

[∣∣∣ 2m∑
k=1

( 1

2n
− 1

2m

)
Xk1A +

2n∑
k=2m+1

1

2n
Xk1A

∣∣∣]
≥ c ′

( 2m∑
k=1

( 1

2m
− 1

2n

)
+

2n∑
k=2m+1

1

2n

)
= c ′

(
1− 2m

2n
+

2n − 2m

2n

)
≥ c ′.
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(
Yn1A

)
is

Cauchy in L1(P).

On the other hand, whenever n > m,

EP
[∣∣Yn1A − Ym1A

∣∣] =EP

[∣∣∣ 2m∑
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2n
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2n
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2n − 2m

2n
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Corollary

Let K be a convex bounded subset of L1(P). TFAE:

1 There exists Q ∼ P such that K is Q-uniformly integrable

2 There exists Q ∼ P such that the L0(Q)- and L1(Q)-topologies
agree on K.

If K is closed, we precisely solve (Q1) in the positive.
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G., D.H.Leung, F.Xanthos ’19: no to (Q2)

Theorem (A)

There exists a convex bounded set K in L1[0, 1] s.t.

L0[0, 1]-compact

the L0[0, 1]-topology on K is locally convex

but no Q, equivalent to the Lebesgue measure on [0, 1], such that the
L0(Q)- and L1(Q)-topologies agree on K.

circled, i.e., K = −K

Construction:

Let (Xn) be IID Cauchy rvs on [0, 1]. For any n ∈ N, put

Yn =
1

βn
Xn1{|Xn|≤kn}.

Set

K =
{ ∞∑

n=1

anYn :
∞∑
n=1

|an| ≤ 1
}
.
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G., D.H.Leung, F.Xanthos ’19: no to (Q2)

Theorem (B)

There exist a nonatomic probability space (Ω,Σ,P) and a convex
bounded set K in L1

+(P) s.t.

the L0(P)-topology on K is locally convex

no Q ∼ P such that the L0(Q)- and L1(Q)-topologies agree on K
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G., D.H.Leung, F.Xanthos ’19: no to (Q2)

The proper topological condition is:

Theorem

Let K be a convex bounded subset of L1(P). TFAE:

1 The relative L0(P)-topology on K is uniformly locally convex-solid on S.

2 There exists Q ∼ P s.t. the L0(Q)- and L1(Q)-topologies agree on K.

uniformly locally convex-solid on K:
∀L0(P)-nbhd U of 0, ∃ convex-solid W ⊆ U such that (X +W) ∩ K is nbhd of X , for
every X ∈ K.
Compare with (X +W) ∩ K ⊂ (X + U) ∩ K.

We improve KZ 13’.

Corollary

Let (Xn) be a bounded sequence in L1
+(P) and let K = co(Xn). TFAE:

1 The L0(P)-topology is locally convex on K.
2 There exists Q ∼ P s.t. the L0(Q)- and L1(Q)-topologies agree on K.
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G., D.H.Leung, F.Xanthos ’19: no to (Q2)

The main tool is the following “localized” Hahn-Banach Theorem.

Proposition

Let K be a convex set in L1(P) and suppose that the relative
L0(P)-topology is uniformly locally convex-solid on K.

Then ∀A with P(A) > 0, ∃0 6= Y ∈ L∞
+ (P), supported in A, such that

EP
[
|Xn − X |Y

]
−→ 0 whenever Xn

P−→ X in K

Y is viewed as linear functional on L1(P), continuous on K wrt
convergence in probability.

Above says the collection of such functionals separates points of L1(P),
under given conditions.
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Thanks for your attention.
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